Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
نویسندگان
چکیده
منابع مشابه
Erratum: Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...
متن کاملLaser-Driven Ion Acceleration from Plasma Micro-Channel Targets
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by usin...
متن کاملIon acceleration from laser-driven electrostatic shocks
Multi-dimensional particle-in-cell simulations are used to study the generation of electrostatic shocks in plasma and the reflection of background ions to produce high-quality and high-energy ion beams. Electrostatic shocks are driven by the interaction of two plasmas with different density and/or relative drift velocity. The energy and number of ions reflected by the shock increase with increa...
متن کاملShort pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration
The interaction of an ultrashort intense laser pulse with thin foil targets is accompanied by the acceleration of ions from the target surface. To make this ion source suitable for application, it is of particular importance to increase the efficiency of laser energy transformation into accelerated ions and the maximum ion energy. This can be achieved by using a thin foil target with a microsco...
متن کاملOptimizing laser-driven proton acceleration from overdense targets
We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/srep42666